The craft is controlled by means of the keyboard, which

varies the rate of change of thrust. If no keys are pressed
the thrust automatically decays to zero. All the keys may be
used ~ the idea is to press in the direction you want thrust -
dead centre is between the H and J keys and the force applied
is proportional to the weighted distance from there.

You have a limited amount of fuel and should you run out the
spacecraft will fall to the surface. You will lose all your
fuel if you collide with the 'edge of the moon'. The
spacecraft is represented by a bell (07) or if your fuel
becomes exhausted the 'flames' go out and the spacecraft
becomes a lower case '0'.

As you approach the surface, the program gives you an

expanded view showing the surface in detail, including boulders
(which must be avoided).

An unhealthy landing will result in a minor explosion!

The game executes at OE6A. Note that the last column of

figures in the listing is the checksum and should not be
entered.

SO.. WHAT ABOUT ZEAP ??

ZEAP stands for Z80 Editor Assembler Package.
OK, so what is an assembler?

An assembler is a program which is used to take the 'donkey
work' out of writing machine code programs. When you are
converting your tediously written mnemonics into instruction
codes (and fumbling through the book, 'cos you can't remember
what they are) and at the same time assigning them to addresses,
you are "assembling the program". Now an assembler does this
for you, not only that, but it keeps track of where you put

the subroutines and workspaces, converts lines of text into
ASCII, and tells you when you started making up instruction
mnemonics.

Fair enough, but what does the editor bit do?

Well most programs don't work straight off, because you got
something wrong, or left something out, and these errors usually
mean inserting or deleting some mnemonics, which of course

sods law dictates that program will either be longer or

shorter. Now the editor allows you to change, insert or delete
at will, and when you re-assemble, all the addresses assigned to
subroutine etc. will all come out in the right places; because
the assembler part keeps track of where you put them. No more
ploughing your way through 2K of object code, changing all the
subroutine calls, just because you left out two bytes at the
start.

Well, I've seen the output of ZEAP, but I still get lost, why is
that?



